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Improvement of the Control Performance of Pneumatic 
Artificial Muscle Manipulators Using an Intelligent 

Switching Control Method 

KyoungKwan AHN*, TU Diep Cong Thanh 
School of Mechanical and Automotive Engineering, University of Ulsan, 

San 29, Muger 2dong, Narn-gu, Ulsan, 680-764, Korea 

Problems with the control, oscillatory motion and compliance of pneumatic systems have 

prevented their widespread use in advanced robotics. However, their compactness, power/weight 

ratio, ease of maintenance and inherent safety are factors that could be potentially exploited in 

sophisticated dexterous manipulator designs. These advantages have led to the development of 

novel actuators such as the McKibben Muscle, Rubber Actuator and Pneumatic Artificial 

Muscle Manipulators. However, some limitations still exist, such as a deterioration of the 

performance of transient response due to the changes in the external inertia load in the 

pneumatic artificial muscle manipulator. 

To overcome this problem, a switching algorithm of the control parameter using a learning 

vector quantization neural network (LVQNN) is newly proposed. This estimates the external 

inertia load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed 

control algorithm is demonstrated through experiments with different external inertia loads. 

Key Words:Pneumatic  Artificial Muscle, Neural Network, Switching Control, Intelligent 

Control 

1. Introduct ion 

Actuator and actuation systems are essential 

features of all robots providing the forces, torques 

and mechanical motions needed to move the jo- 

ints, limbs or body. Their performance is characte- 

rized by parameters such as power/weight ratio, 

strength, response rate, physical size, speed of mo- 

tion, reliability, controllability, compliance, cost 

and so on. 

For most robotic applications the common ac- 

tuator technology is an electric system with a 

very limited use of hydraulics or pneumatics. But 
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electrical systems suffer from relatively low po- 

wer/weight ratios and especially in the case of a 

human-friendly robot, or human coexisting and 

collaborative systems such as in the medical and 

welfare fields. 

Problems with the control and compliance of 

pneumatic systems have prevented their wide- 

spread use in advanced robotics, ttowever their 

compactness, power/weight ratio, low cost, ease 

of maintenance, cleanliness, ready availability, 

cheap power source and inherent safety because 

of the compliance of compressed air, are factors 

that could be potentially exploited in sophistica- 

ted dexterous manipulator designs. These advan- 

tages have led to the development of novel ac- 

tuators such as the McKibben Muscle, Rubber 
Actuator and Pneumatic Artificial Muscle Mani- 

pulators. Thus a pneumatic artificial muscle (whi- 

ch is abbreviated as PAM) manipulator has been 

applied to construct a therapy robot for cases in 
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which high level of safety for humans is required. 

However, the air compressibility and the lack of 

damping ability of the pneumatic muscle actuator 

bring a dynamic delay of the pressure response 

and cause oscillatory motion. Therefore it is not 

easy to realize motion with high accuracy, high 

speed and with respect to various external inertial 

loads in order to realize a human-friendly the- 

rapy robot. 

As the PAM manipulator is one of the well- 

known systems for safety with humans, it is pre- 

ferable in contacting tasks with humans and many 

control strategies have been proposed. As a result, 

a considerable amount of research has been de- 

voted to the development of various position 

control systems for the PAM manipulator. A 

Kohonen-type neural network was used for the 

position control of the robot end-effector within 

1 cm after learning (Hesselroth et al., 1994). Re- 

cently, the authors have developed a feedforward 

neural network controller, where the joint angle 

and pressure of each chamber of the pneumatic 

muscle were used as learning data and the accu- 

rate trajectory following was obtained, with an 

error of 1[-°~ (Patrick et al., 1996). 

However, for widespread use of these actuators 

in the field of manipulators, a high speed, precise 

control of the PAM manipulators is required. 

Among previous control approaches, PID control 

(Tsagarakis et al., 1999), fuzzy P D + I  learning 

control (Chan and Lilly, 2003), fuzzy+P1D con- 

trol (Balasubramanian and Rattan, 2003), robust 

control (Cai and Yamura, 1996; Guihard and 

Gorce, 1999; Carbonel et al., 2001), feedback line- 

arization control (Kimura et al., 1995), feed- 

forward control+fuzzy logic (Balasubramanian 

and Rattan, 2003), phase plane switching control 

(Noritsugu et al., 1999), variable structure con- 

trol algorithm (Hamerlain, 1995) and H infinity 

control (Osuka et al., 1990, Ahn et al., 2002, Ahn 

et al., 2003) have been applied to control the 

PAM manipulator. Though these systems were 

successful in addressing smooth actuator motion 

in response to step inputs, many of these systems 

used expensive servo valves and the external 

inertia load were also assumed to be constant or 

slowly varying. The external inertia load is not 

always exactly known and the contact force with 

humans is different in each case when the mani- 

pulator will be used as a therapy robot in the near 

future. Therefore, it is necessary to propose a new 

intelligent control algorithm, which is applicable 

to a very compressible pneumatic muscle system 

with various loads. 

Many intelligent control algorithms based on a 

neural network have been proposed. An intelli- 

gent control using a neuro-fuzzy network was 

proposed by Iskarous and Kawamura (1995). A 

hybrid network that combines fuzzy and neural 

network was used to model and control complex 

dynamic systems, such as the PAM system. An 

adaptive controller based on the neural network 

was applied to the artificial hand, which is com- 

posed of the PAM (Folgheraiter et al, 2003). 

Here, the neural network was used as a controller, 

which had the form of compensator or inverse of 

the model and it was not easy to apply these 

control algorithms to the quickly-changing iner- 

tia load systems. 

In order to overcome these problems, a learning 

vector quantization neural network (LVQNN) 

was applied as a supervisor of the traditional PID 

controller, which estimated the external inertia 

load and switched the gain of the PID controller. 

It was already proven by experiment on the posi- 

tion control of the pneumatic rodless cylinder that 

the LVQNN was an appropriate algorithm for the 

recognition of quickly-changing external loads 

and it had little computation time as well as an 

easy application to the PAM system (Ahn et al., 

2003). 

The object of this paper is to implement propor- 

tional valves, rather than expensive servo valves, 

to develop a fast, accurate, inexpensive and intel- 

ligent PAM control system without regard for the 

changes in external inertia loads. The proposed 

control algorithm was verified to be very effective 

by experiments with different loads. 

2. Experimental  Setup 

2.1 Experimental apparatus 
The schematic diagram of the pneumatic artifi- 

cial muscle manipulator is shown in Fig. 1. The 
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Schematic diagram of the pneumatic artificial 

muscle manipulator 

Fig. 3 Photograph of the experimental apparatus 

Fig. 2 Structure of the pneumatic artifial muscle 

hardware includes an IBM compatible personal 

computer (Pentium 1 GHz),  which calculated the 

control input and controlled the proportional 

valve (FESTO, MPYE-5-1 /8HF-710  B) throu- 

gh D / A  board (Advantech. PCI 1720), and two 

pneumatic artificial muscles (FESTO, MAS-10-  

N - 2 2 0 - A A - M C F K ) .  The structure of th  artificial 

muscle is shown in Fig. 2. The pressure difference 

between the antagonistic artificial muscles pro- 

duced a torque and rotated the joint as a result. 

(Fig. 4) A joint angle 0 was detected by a rotary 

encorder (METRONIX,  H40-8-3600ZO) and the 

air pressure into each chamber was also measured 

by the pressure sensors (FESTO, SDE-10-10) 

and led back to the computer through a 24-bit 

digital counter board (Advantech, PCL 833) and 

A / D  board (Advantech, PCI 1711), respectively. 

The external inertia load could be changed from 

20kg'cm z to 620kg.cm 2, which is a 3,000,9/o chan- 

ge with respect to the minimum inertia load 

condition. The experiments were conducted under 

the pressure of 4 Ebar~ and all control software 

was coded in C program language. A photograph 

of the experimental apparatus is shown in Fig 3. 

2 . 2  C h a r a c t e r i s t i c s  o f  P A M  m a n i p u l a t o r  

The PAM is a tube clothed with a sleeve made 

of twisted fiber-cords, and fixed at both ends by 

fixtures. The muscle is expanded to the radial 

direction and constricted to the vertical direction 

by raising the inner pressure of the muscle throu- 

gh a power-conversion mechanism of the fiber- 

cords. The PAM has the property of a spring, and 

can change its own compliance by inner pressure. 

A few sliding parts and a little friction are favor- 

able lbr a delicate power control. But the PAM 

has the characteristics of hysteresis, non-linearity 

and low damping. Particularly, the system dyna- 

mics of the PAM changes drastically by the com- 

pressibility of air in cases of changing external 

loads. In our experiments, the external load chan- 
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Fig. 5 

ged about 3,000[%] with respect to the minimum 

inertia condition. 

When using the PAM for the control of a mani- 
5 

pulator, it is necessary to understand the char- 
0 

acteristics of hysteresis, nonlinearity and so on. 
-5, Therefore, the following experiments were per- 

formed to investigate the characteristics of the -10. 

PAM. Figure 5 and 6 demonstrate the hysteresis £2 -15. 

characteristics for the joint. This hysteresis can be ~ -20. 

shown by rotating a joint along a pressure tra- -25. 

jectory from Pl=Pmax, P2=0 to P1--0, P2=Pmax -a0. 

and back again by incrementing and decremen- 
-36- 

ting the pressures by controlling the proportional 

valve. The hysteresis of the PAM is shown in Fig. 

6. The width of the gap between the two curves Fig. 6 
depended on how fast the pressures were chang- 

ed; the slower the change in the pressures, the 

narrower the gap. The trajectory, control input to 

the proportional valve, velocity, and pressure of 

each chamber of the PAM are depicted in Fig. 5. 

The velocity is numerically computed from the po- 
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sition. Near the extreme values, the joint velocity 

decreased since the increase in exerted force for a 

constant change in pressure was less. 
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3. Intelligent Switching Control 
Algorithm 

3.1 The overall control system 
The control performance of a PAM manipula- 

tor depends on the pressure responses of the pneu- 

matic artificial muscle. Therefore, the pressure 

should be controlled as rapidly and accurately as 

possible. To handle these problems, several re- 

search works have been concerned with such 

factors as pressure control systems with a com- 

pensation of pressure delay using a 7 PCM digital 

control valve (Noritsugu and Tanaka 1997), 

valve systems for the flow rate using piezo-elec- 

tric valves (Medrano-Cerda et al., 1995), pressure 

control systems using servo valves (Tondu et al., 

1994) and the servo systems using electro-mag- 

netic valves (Lee and Shimoyama, 1999). Though 

these pressure control systems are satisfactory in 

their response, the cost of the flow control system 

is very expensive and some of these systems re- 

quire another sub-controller to satisfy set-point 

controls. 

On the contrary, Hildebrandt and his team used 

an electronic proportional directional 5/3-way 

control valve in order to control pressure and 

flow rates (Hildebrandt et al., 2002). With this 

valve, the stroke of the valve-spool is controlled 

proportionally to a specified set point. In addi- 

tion, a fuzzy P1D-type tracking controller with 

learning ability has good results with accurate 

positioning of the pneumatic muscle after a few 

seconds of operation (Chan and Lilly, 2003). 

However, some limitations still exist because the 

necessary time for learning is quite long and the 
controller output functions properly after about 

30~45 seconds according to the input signal. 

And the problem of changes of external inertia 

load is not mentioned in the above system. Thus 

the goal of this paper is to develop a fast, accu- 

rate, inexpensive and intelligent pneumatic servo 

system for the PAM without regard to changes of 

external inertia loads. 

To cope with the 30 times change of external 

inertia load with respect to the base inertia load, 

the control performance cannot be guaranteed by 

0, ~ - - ~  PIT) c, 

__]Intelligent switching control 

Fig. 7 Structure of the newly-proposed control 
algorithm 

using a fixed gain controller and the external 

inertia load condition must be recognized using 

the dynamic information of the PAM manipu- 

lator in an on-line manner. Here we propose the 

learning vector quantization neural network 

(which is abbreviated as LVQNN) as a supervi- 

sor, which classifies 3 typical external inertia 

loads (20, 290, 570kg.cm2). The structure of the 

newly-proposed switching control algorithm is 

shown in Fig. 7. To control this PAM manipu- 

lator, a conventional PID control algorithm was 

applied in this paper as the basic controller. The 

controller output can be expressed in the time 

domain as : 

u(t)=Kpe(t) +~fo te( t )d t  +KpT~ded(~/) (1) 

Taking the Laplace transform of (1) yields : 

U(s) =KeE(s) +~sE(S)  +KpT~E(s) (2) 

and the resulting PID controller transfer function 

of: 

E(s) 

A typical real-time implementation at sampling 

sequence k can be expressed as : 

u(k) =Kve(k) + u ( k - 1 )  + K~----e(k) 

e(k) - e k ( k - l )  (4) 
+ K~ T,~ T 

where u (k ) ,  e(k) are the control input to the 

control valve and the error between the desired set 

point and the output of joint, respectively. 

3.2 Recognition the external load condition 
by using the LVQNN 

The external load must be recognized for an 
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intelligent control of the PAM manipulator. Here 

the LVQNN is newly-proposed as a supervisor of 

the switching controller. 

3.2.1 Structure of the neural classifier 
According to the learning process, neural net- 

works are divided into two kinds : supervised and 

unsupervised. The difference between them lies in 

how the networks are trained to recognize and 

categorize objects. The LVQNN is a supervised 

learning algorithm, which was developed by Ko- 

honen and is based on the self-organizing map 

(SOM) or Kohonen feature map. The LVQNN 

methods are simple and effective adaptive learn- 

ing techniques. They rely on the nearest neighbor 

classification model and are strongly related to 

condensing methods, where only a reduced num- 

ber of prototypes are kept from a whole set of 

samples. This condensed set of prototypes is then 

used to classify unknown samples using the 

nearest neighbor rule. The LVQNN has a com- 

petitive and linear layer in the first and second 

layer, respectively. The competitive layer learns to 

classify the input vectors and the linear layer 

transforms the competitive layer's classes into the 

target classes defined by the user. Figure 8 shows 

the architecture of the LVQNN, where P, y, Wl, 

W2, R, S1, $2, and T denote input vector, output 

vector, weight of the competitive layer, weight of 

the linear layer, number of neurons of the input 

layer, competitive layer, linear and target layer, 

respectively. In the learning process, the weights 

of the LVQNN are updated by the following 

Competitive layer Linear layer ( ~  

p ~ n,( l )  ~ IA(I  I) ~ n2(l ) ~ a2(I) Y 

pl 

p2 a (2 / • y2 

a~(3) • Y3 
o __.._.a 

n+(SO n2(Sz) a~S2) 

R w,~,~) E C w~(s~,s, E '-/" Y,, 
\ s, \ s~ ) L T _ ]  

Fig. 8 Structure of the LVQNN 

Kohonen learning rule if the input vector belongs 

to the same category. 

AWl ( i ,  j)  =Aa~(i) (p(j) - W~(i, j) ) (5) 

If the input vector belongs to a different cate- 

gory, the weights of the LVQNN are updated by 

the following rule 

A W~(i, j) = - A a l ( i )  (p(j) - W~(i, j ) )  (6) 

where /1 is the learning ratio and al(i) is the 

output of the competitive layer. 

3.2.2 Data generation for the training of the 
LVQNN 

In the design of the LVQNN, it was very im- 

portant to identify what input to select and how 

many sequences of data to use. Generally the 

training result was better according to the in- 

crease of the number of input vectors, but it took 

more calculation time and the starting time of the 

recognition of inertia load was later. In our 

experiment, we prepared 2 cases of input vectors 

as shown in Fig. 9(a) and (b). In Case 1, the 

input vectors into the LVQNN were set for the 

control input, angular velocity, and pressures of 

each chamber. Meanwhile, the input vectors into 

the LVQNN are set for the control input, angular 

velocity and pressure difference in Case 2. In each 

case, the output of the LVQNN was an integer 

value between I and 3, where 3 cases could be cla- 

ssified according to the external inertial load, i. e. 

for example, class 1 meant that the range of the 

external inertia load was approximately between 

20 and 45kg.cm 2 as shown in Table 1. To obtain 

the learning data for the LVQNN, a series of ex- 

periments were conducted under 9 different exter- 

nal inertial load conditions, as shown in Table 1. 

The experimental results of the generation of 

training data are shown in Fig. 10(a) -- (e), 

which correspond to the control input to the 

proportional valve, angular velocity of joint, 

pressures in the chamber 1 and chamber 2, and 

pressure difference, respectively. In each figure, 

the number * and # in Inertia*# means the class 

and the inertia change in that class, respectively. 

In the experiments of the generation of training 

data, the reference angle is set to 15 [o] and the 
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Table 1 Classification of the external inertia load 

Initial*#[kg-cm z] Class 1 

1 

1 20 

2 33 

3 45 

Class 2 Class 3 

2 3 

28 56 

31 59 

34 62 

Set for th . . . .  trol :[ i input m, 
Set for the angular - Learning Vector 
velocity " Quantization Class 
Set for the pressut~ 1 Neural Network ~" 

LVQ),~ 
Set for the presst~ 2 

(a) Case 1 

Set for the control m, "" t.. 
input 

I 
Learning Vector 

Set for the angul,r ~ Quantization Class 
velocity - Neural Network ~- 

Set for the , LVQNN 
pressure difference 

(b) Case 2 

Fig. 9 Learning data for the LVQNN 

PID controller  with fixed gain was used. 

3.2.3 Training process of the LVQNN 

The learning vector quantizat ion neural net- 

work (LVQNN) is a method for training compe- 

titive layers in a supervised manner. A competi- 

tive layer will automatically learn to classify in- 

put vectors. However,  the classes that the compet- 

itive layer finds are dependent only on the dis- 

tance between input vectors. If  two input vectors 

are very similar, the competit ive layer probably 

will put them into the same class. Thus, the 

L V Q N N  can classify any set of  input vectors, not 

just l inearly-separable sets of  input vectors. The 

only requirement is that the competit ive layer 

must have enough neurons, and each class must 

be assigned enough competit ive neurons. 

A total of 9 experimental cases were carried out 

to prepare for the generation of  training data for 

the LVQNN.  In the training stage of  LVQNN,  the 

number of  input vectors was adjusted from 5 to 21 

with 5 steps and the number of  neurons in the 

competit ive layer was adjusted from 8 to 26 with 

10 steps in each case, as shown in Table  2, in or- 

T a ~ e 2  Training success rate of the LVQNN (,%o) 
(NIV : Number of Input Vector) 
(NCL : Number of Neuron of Competitive 

Layer) 

NIV/NCL 5 9 13 

8 80.48 79.38 84.59 

10 78.86 77.88 76.73 

12 78.51 76.43 81.58 

14 79.48 79.16 83.83 

16 80.42 79.97 84.50 

18 80.92 77.80 87.02 

20 78.37 77.28 84.77 

22 77.60 78.06 83.06 

24 77.24 74.00 79.80 

26 76.96 80.09 80.42 

(a) Case 1 

17 

81.38 

81.28 

82.32 

76.47 

84.78 

77.70 

79.71 

81.38 

82.33 

79.70 

21 

78.47 

78.02 

78.64 

82.13 

81.83 

79.56 

78.73 

77.92 

77.96 

76.86 

NIV/NCL 5 9 13 17 21 

8 74.54 72.30 70.57 70.88 71.12 

10 73.01 71.52 74.67 73.37 73.73 

12 74.06 72.81 74.12 74.10 74.02 

14 75.13 73.44 75.78 74.53 74.57 

16 72.71 73.56 76.07 70.93 74.91 

18 73.64 74.77 78.80 74.96 76.09 

20 72.14 73.89 75.05 76.42 75.61 

22 72.66 71.43 74.21 73.56 75.51 

24 72.86 72.26 73.84 74.81 75.37 

26 71.93 71.49 73.79 73.47 75.31 

(b) Case 1 

der to obtain the optimal  weight of  the LVQNN.  

To investigate the classification ability of  the 

LVQNN,  the same input vectors, which were used 

in the learning stage, were re-entered into the 

L V Q N N  and the learning success rate was cal- 

culated. Here, the learning success rate defines the 

percentage of  success of  the L V Q N N  learning, 

where success means that the output  of  the 

L V Q N N  was equal  to the target class with respect 

to the same input vectors. 

As the L V Q N N  classified input vectors into 

target classes by using a competi t ive layer and the 

classes that the competit ive layer found were de- 

pendent only on the distance between input vec- 

tors, a high learning success rate was realized 
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(e) Pressure Difference 

Experimental results for learning data generation 

when the input vectors were distributed widely.  

From Fig. lO, both pressures o f  each chamber 

of  the muscle  were used as learning data in Case 

1 and the difference pressure in Case 2. From Fig. 

10, It was understood that the input vectors in 

Case 1 were distributed more widely  than those in 

Case 2. Therefore, it was concluded that the tra- 

ining result of  Case 1 was better than the training 

result o f  Case 2. 

From Fig. l l and Table  2, it was also under- 
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(a) Case 1 

Fig. 11 

(b) Case 2 

Training success rate of the LVQNN 

stood that the optimal number of input vectors 

and neurons of the competitive layer were 13 and 

18, respectively and the maximum training success 

rate was 871%1, which was enough for recogni- 

tion of the external inertia load condition. 

3.3 Proposition of the smooth switching 

algorithm 
If the external inertial load condition was dif- 

ferent from the previous training condition, the 

output of the LVQNN may have belonged to the 

mixed classes with different ratios in each case (i. 

e. if the external inertia load was between the 

inertia of Class l and Class 2 it may have be- 

longed to 1 or 2 class). Therefore the following 

switching algorithm was proposed to apply to the 

abrupt change of class recognition result. The 

switching algorithm is described by the following 

equation 

class(k) : ,~Xclass (k - -  1) -- (I --zt) Xclass(k) (7) 

Table 3 Optimal parameters of the P1D controller 

Class No. Kp 

1 5XI0 -3 

2 0.25 X 10 -3 

3 0.1 × 10 -3 

K~ Kd 

0.1Xl0 -3 0.65×10 -3 

0.01 × 10 -3 0.06 × 10 -3 

0.001 x 10 -3 0.036X 10 -3 

where k is the discrete sequence, ,~ is the forgetting 

factor and class (k) is the output of the LVQNN 

at the k time sequence. The optimal parameters of 

PID controller with respect to each inertia condi- 

tion were obtained by tr ial-and-error through 

experiments, which are shown in Table 3. These 

PID parameters seemed too small because the 

sampling time was not included in the derivation 

of the PID controller and they had the magnitude 

of the sampling time. From Table 3, it was under- 

stood that the proportional, integral and deriva- 

tive control gains were decreasing in accordance 

with an increase in the external inertia load. 

4. Experiment Results 

Figure 12 shows the experimental results of po- 

sition control with different external inertia loads 

(20, 280 and 560[kg-cm2]), where the control 

gains were fixed and the same as that of the mi- 

nimum external inertia load condition. From Fig. 

12, it was understood that the system response 

became more oscillatory according to the increase 

of the external inertial load and it was requested 

that the control parameters be adjusted according 

to the change of the external inertia load. 

Next, experiments were carried out to verify the 
effectiveness of the proposed switching algorithm 

by the LVQNN. The experimental results are 

shown in Fig. 13, 14 and 15, which correspond to 

the minimum external inertial load condition 

(Class 1), medium inertia load condition (Class 

2), and maximum inertia load condition (Class 

3), respectively. In these figures, we show angle of 

joint, control input, angular velocity, pressures in 

chamber 1 and 2, output of the LVQNN and 

filtered output of the LVQNN, respectively. As 

the number of the input vector was 13, which 

included 4 control inputs, 3 angular velocities, 

and 3 pressures of each chamber, the output of the 
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L V Q N N  started to function after 3 sampling time 

(i. e. at least 4 control  inputs must be prepared for 

the calculat ion of  L V Q N N ) .  F rom these experi- 
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Experimental results when external inertia 
load is 28.12[g-m 2] (class 2) 

mental results, part icularly in the filtered output  

of  the L V Q N N ,  it was verified that the external 

inertial load was almost exactly recognized to the 

correct class and an accurate posit ion control was 

realized with a steady error o f  0.05E°]. 

The experimental  results with an external in- 

ertia load of  420[kg .cm z] are shown in Fig. 16. 

This load condi t ion corresponded to Class 2 and 

Class 3. The class number calculated from the out- 

put of  the L V Q N N  was between 2 and 3, which 

proved that the external inertia load was betwe- 

en 280 and 560[kg.cm2].  In Fig. 17, experiments 

were conducted to compare  the system response 

with respect to 2 different weight condit ions (280, 

560[kg-cm2]) with and without the proposed 

switching algori thm by the L V Q N N .  From the 

experimental  results, it was found that the system 

response became oscil latory according to an in- 

crease in the external inertial load. On the con- 

trary, the system response was almost the same 

and the steady state error was within 0.1 [°] in any 

case by using the proposed switching algorithm 
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between with and without the LVQNN 

with the LVQNN.  It was also verified that the 

proposed method was very effective in the accu- 

rate posit ion control  of  the P A M  manipulator.  

5. Conclusion 

In this study, a fast, accurate, inexpensive and 

external inertial load independent  pneumatic  ar- 

tificial muscle manipulator  that may be applied to 

a variety of  practical posi t ioning applications was 

developed. The  posit ion control  was successfully 

implemented using a propor t ional  valve instead 

of  an expensive servo valve. And  the steady state 

error was reduced within 0.1 [°]. 
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The second contribution of  this paper is to pro- 

pose a learning vector quantization neural net- 
work (LVQNN) as a supervisor of the switching 
controller in the pneumatic artificial muscle mani- 
pulator, where the LVQNN functions to recog- 
nize the condition of the weight of an external 
inertial load and to select suitable gains for each 
load condition. 

From the experiments of the position control of 
an pneumatic artificial muscle manipulator, it was 
verified that the smooth switching algorithm is 
very effective to overcome the deterioration of 
control performances of transient responses even 
if the external inertia load changed for 3,0001%]. 
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